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A differential approach-and-evasion game in a finite time interval is considered [l]. It is assumed that the positions of the game 
are constricted by certain constraints which represent a closed set in the space of the positions. In the case of the first player, it 
is necessary to ensure that the phase point falls into the terminal set at a finite instant of time and, in the case of the second 
player, that this terminal set is evaded at this instant [ 11. A method is proposed for the approximate construction of the positional 
absorption set, that is, the set of all positions belonging to a constraint from which the problem of approach facing the first player 
is solvable. Relations are written out which determine the system of sets which approximates the positional absorption set. The 
main result is a proof of the convergence of the approximate system of sets to the positional absorption set and the construction 
of a computational procedure for constructing the approximate system of sets. 0 2003 Elsevier Ltd. All rights reserved. 

This paper touches on the earlier investigations in [l-16]. 

1. FORMATION OF THE PROBLEM 

Suppose a conflict-control problem is specified, the behaviour of which is described by the equation 

f = f(t,x,u, u), x(t,) = x0, u E P, VUE Q 

in the time interval [to, 61 (to I B c -). 

(1-l) 

Here, x is an m-dimensional phase vector from the Euclidean space R”, u is the control of the first 
player, 2) is the control of the second player, and P and Q are compacta in the Euclidean spaces I?’ and 
R4 respectively. 

It is assumed that the following conditions are satisfied: 
A. The game takes place in a bounded and closed domain <D of the space of the variables t, 

x(t E [to, 61,x E Rrn). 
B. The vector function f(t, x, U, U) is defined and is continuous with respect to the union (t, x, U, U) 

in the set Ix R” x P x Q (1 is the time interval containing [to, 191 within it) and satisfies a local Lipschitz 
condition with respect to x: for any compacturn D C [to, 61 x R"', and L = L(D) E (0, -) is found such 
that 

llf (6 2’) , u, u) - f( t, xC2), u, u)(l I Lllx(‘) - P/1 

for any (t, x@, U, U) (i = 1, 2) from D x P x Q. 
(1.2) 

Here, ljfll is the norm of the vectorf in the corresponding Euclidean space. 
It is also assumed that the motionsx(t) of system (1.1) are extendable in the interval [to, 61. 
The differential game being considered is made up an approach problem and an evasion problem 

[l]. In the problem of approach facing the first player, it is necessary to ensure that the motionsx(t) of 
system (1.1) at the instant of time 19 fall in the closed set M, which is contained in Q(6) = {X E R” : 
(6, x) E @}. It is necessary to ensure a solution of the problem in the class of positional procedures for 
the control of the first player [l]. 

It has been shown [l] that an alternative holds in the case of the differential game which has been 
formulated and this is that a closed set 9 C @ exists, which is called the ositional absorption set, 
such that the approach problem is solvable for all initial positions (t*,x*) E wg and the evasion problem 
is solvable for all initial positions (t*, x*) E a\@. At the same time, it was established that @ is the 
maximum u-stable bridge. 
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The set We only admits of an analytical description in infrequent cases, and the problem of the 
approximate construction of the set @, considered below, is therefore important. Using retrograde 
constructions, a system of sets is introduced which approximates Wc and corresponds to a certain 
discretization of the interval [to, 61. The convergence of the approximating system of sets to W(’ is 
validated in the case of a discretization step tending to zero. 

2. THE STABLE ABSORPTION OPERATOR AND STABLE BRIDGES 

Since @ is the maximum u-stable bridge [l], the property of stability is the key property in separating 
out We in CD. Stability of the set W, which is contained in @‘, signifies a weak invariance of Wwith respect 
to a certain family of differential inclusions related to system (l.l), which are also considered in the 
interval [to, 61. 

We will now introduce a function (the Hamiltonian) of system (1.1) into the treatment. 

H(t, 4 I) = y&(1, f(t, x, u, u)). I E R” 

where (I, f) is the scalar product of the vectors 1 andf from Rm. 
Suppose @Jo > 0) is the o-neighbourhood of the set @ in the space of the variables t and x such 

that @‘n c I x R”‘. 
We will assume that G = {f E R” : ]]f]] 5 K < - > is a sphere in R”’ such that 

F(t, x) = co{f(t, x, u, u) : u E P, VE Q} c G, V(t, x) E 0, 

Here, co(f) is the convex shell of the setf. 
Suppose a certain set Y of elements w and also the family {Fy: w E ‘Y} of mappings F,: (t, x) H 

F,,,(t, x), (t, X) E (DC, which satisfies the following conditions, are given. 
A.l. For any (t, x, v) E D0 x ‘P’, the set F,+,(t, x) is convex, closed in R” and F,+,(t, x) c G. 
A.2. The inequality 

holds for any (t, x, 1) E CD0 x S. 
A.3. A function o*(6) (o*(6) 10 exists when 6 JO) such that 

W&*, x*1, F&*9 x*)1 s 0*0* - t*l + lb* -x*111 
(t,,x,) and (t*,x*) from aa, WE Y 

Here 
hF(l) = yp,(/, f) when Fc R”; S = (1 E Rm : ~~1~~ = 1) 

E 

and d(F,, F*) is the Hausdorff distance between the sets F, and F* in Rm. 
As examples of families of mappings which satisfy conditions A.1 - A.3, we mention the families 

{GI : 1 E S} and {I;,(., : u(a) E v) [l, 4, 51; here, G[(t, x) = {f E G : (I, f) I H(t, x, I)}, F,,(.,(t, x) = 
co {f(t, 4 u, u(u)) : u E P}, co(f) is the closed convex shell if the set {f} and Vis the union of all of 
the mappings u(e): P H Q. 

Note that, in the case of certain classes of control systems and, in particular, for systems (1.1) with 
right-hand side 

f(r, x, u, u) = Q(t, x) + B(t, x)u + C(t, x)u (2-l) 

and constraints P and Q, which are convex polyhedra with a finite number of vertices, a family of 
mappings can be introduced which satisfies conditions A.l-A.3 and corresponds to the finite set Y. The 
set of all the vertices &)(j = 1, 2, . . . , J) of the polyhedron Q can be taken as this set Y and the set 

F,(j,(t,x) = {~=$(~,x)+B(~,x)u+C(~,X)U(~):UE P}, j = 1,2,...,J 

can be taken as the set F,,,(t, x). 



The construction of stable bridges in differential games with phase constraints 683 

This specification of the family {F,c,,, j = 1,2, . . . , J}, which satisfies conditions A.l-A.3, enables one 
effectively to carry out an approximate construction of the set @. 

We will now present a definition of the stable absorption operator in the approach problem being 
considered. 

We introduce the following notation: X,,,(t*; t*, x*) is the set of all x* E R” into which the solutions 
x(.) = (x(t): t* I t S t*) of the differential inclusion 

ic F,UJ), x(t*) = x*, 

X,‘(t,; t*, X*) = {x* E R* : XJt*; t,, x.+) n X* f 0} 

enter at the instant of time t* E [t*, 61 and X* is a set from R”. 

Dejinition 1. In the approach problem, we shall call the mapping 

(t*, t*, X*) H 2Rm(t,, t*, X*) E Ax 2Rm 

defined by the relation 

7c(t,, t*, X*) = Q(t,)n 
( 

A X,‘(t,; t*, X*) 
w=y > 

the stable absorption operator rr. Here, A = {(t*, t*): to 5 t* c t* 5 61. 

Definition 2. We shall call the closed set W c CD a u-stable bridge in the approach problem, if 

W(S) c M, W(t,) c x(t,; t*, W(t*)), V(t*, t*) E A 

Here, W(t) = {x E R” : (t,x) E w). 
The problem of stability is central in the theory of positional differential games. Definition 2 presented 

here is a more recent definition of stability. However, it can be shown that the u-stable bridges v, 
which are separated out in the set @ using the definition from [l], are exactly the same bridges. This 
justifies the use of the family {P’,,, : w E ‘I!}, which satisfies conditions A.l-A.3, is separating out the 
maximum u-stable bridge p, that is, the positional absorption set [l], in 0. Note that, in solving the 
approach problem using the positional approach, the main difficulty lies in constructing the bridge I@. 
It is well known that an accurate description of the bridge l@ using analytical relations is only possible 
in the case of certain special classes of systems (1.1). In the general case, the exact separation of the 
stable bridge We has to be abandoned and, because of this, the problem of the approximate construction 
of fl is an urgent one. The following section is concerned with this problem. 

3. THE APPROXIMATING SYSTEM OF SETS 

We will assume that the family {F,+, : w E ‘I’} also satisfies the following condition. 
A.4. A number h E (0, -) exist such that 

W,(t, x*1, F,(t, x*)1 5 hllx, --x*11 

for any w E ‘I”, (t, x,) and (t, x*) from <D,. 
We will now present a definition of the approximating system of sets which is directed towards the 

approximate calculation of the set I@. The concept of an approximating system of sets arises when a 
scheme which is continuous (with respect to time) is replaced by a u-stable discrete scheme, where the 
interval [to, 61 is replaced by the subdivision I = {to, tl , . . . , t,, = S} and the setsX,,,(t*; t,, x*), rq E ‘I’ 
from Definition 1 are replaced by the sets x* + (t* - t,)F,,,(t,, x*), w E Y. Furthermore, Definitions 1 
and 2 are transformed in a corresponding manner into definitions which are intended for work with a 
discrete time ti (i = 0, 1, . . . , N). 
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So, we put 
Xl&*; t,, x*) = x* + (r* - t*)$(t*, n*> 

--1 
Xw(‘*; t*,X*) = {x* E R” : x* n X,(r*; I,, n,) # 0) 

(t.+, t*) E A, x* E Rm, X* c Rm, y E ‘I’ 

Definition 3. We shall call the mapping (t*, t*, X*) * A x 2Rm, given by the relation 

I@.+, t*, x*) = a(t*jE n 
( n X;1(t*; t*, x*) 
WEY > 

the approximating stable absorption operator rcE(s E (0, o)) in the approach problem. 
We will use the notation 

o*(6) = sup a*(b* - t*l + lb* -x*111 
(Y+.x*) and (t*, I*) from m. 

If, - I’I + IIx* -x*11 5 s (3.1) 
o(6) = 6a*((l+K)6), 6>0 

It follows from the definition of the functions o*(6) and o(6) that they decay monotonically to zero 

when 6 L 0 and lim T = 0. 

We specify the sequence of subdivisions I, = {ts, tl, . . . , tNtn) = 6) of the interval [to, 191 such that 
the diameters 

L\b) = max{Ai: OlilN(n)-I), Ai = ti+,-ti 

of the subdivisions I, tend monotonically to zero as IZ + 00. 
Note that the instants ti of the subdivisions I,, are different for each subdivision I’,. However, in order 

not to make the notation too complicated, we shall not explicitly reflect this dependence of the instants 
ti on the number n. 

We will not establish a correspondence between a sequence of numbers {Ei} 

&i = o(Ai_,)+(l+hAi_,)Ei_lr i = 1,2 ,..., N(n), ~a = 0 

and each subdivision r,. 
We shall also assume that the subdivisions I, are chosen to be so “minute” that, for any I,, the 

inequalities 

max (l+K)Ai = (l+K)A’“‘Io, max ai5o 
OSiSN(n)-1 OSi5N(n)-1 

(3.4 

are satisfied. 
Corresponding to each subdivision, we now set up a sequence {w(“)(tJ} of sets l%‘(“)(tJ c R”, 

ti E I, which is given by recurrence relations starting from the final instant tNcn) = 6 of the subdivision 
r il. 

DeJinition 4. Assume that 

ii.““‘@) = MEN(“) 

ii+“‘( ti) = 7tEi(ti; ti+,, iP’(ri+,)), i = N(n)- 1, N(n)-2, . . . . 1,0 

The sequence @#“)(ti)} is therefore a sequence of the sets lSn)(ti) C R” given in a backwards manner. 
We will now determine the limit of this sequence when the diameter A@) of a subdivision r, tends to 
zero. 
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Definition 5. We will assume that R” is the set of all points (t*,x,) E @ for each of which a sequence 

{(T”, Xn) : 7, = t,(t*), X” E ii+‘( (3.3) 

is found such that (t*, x,) = lim(z,, x,J when it H 00. Here 

z,(t,) = rnin ti 
Ii E r,, Ii 2 I* 

Since the equality I?“)(6) = M +,(“, is satisfied, the section Q’(S) = {x E R” : (6, x) E no} of the set 
Q” is defined by the equality Q’(9) = M. This means that Go f 0. Moreover, it follows from Definition 
5 that R” C Q. 

Theorem. The equality 

holds. 

R0 = wo 

Proof. We will first prove the inclusion z1’ C FVa. In order to do this, we will show that R” is a U- 
stable bridge. Actually, the inclusion Q’(S) C M, which follows from the equality Q’(9) = M, is satisfied. 

We will now prove the inclusion fi’(t,) C n;(t,; t*, no@*)) for any (t*, t*) E A. 
We fix an arbitrary point (t*, x*) E sZ”, t* < 6 for this and use Definition 5. 
We consider an arbitrary number IZ and the interval [r,, 91 corresponding to it. It follows from the 

inclusions, E #“)(z,J that a vector function Z@)(t), which is absolutely continuous in [r,, 61, exists such 
that the relations 

;(n)(t) E F,(t, x’“‘(fi)), ? E [ti, ti+ 11 C [Z,, 6) 

P)(Z,) = Xn, P( ti) E ii’“‘< ti), 
(3.4) 

7, < ti < I9 

hold for any w E Y. 
We now introduce functions into the treatment which are continuous extensions of the functions Z&“)(t), 

t E [r,, t9] in the interval [t*, 191. 

j’“‘(t) = 
{ 
P(TJ, t*sts2, 
P)(t), 

, n = 1,2, . . . 
T,It119 

Since the sequence {y(“)(t)> is uniformly bounded and equipotentially continuous in [t*, 61, a uniformly 
converging subsequence can be separated out from it. Without loss of generality in the reasoning, we 
shall assume that this same sequence #“)(t)> converges uniformly in [t*, rY]. On puttingx(t) = limy(“)(t), 
t E [t*, 191 (the limit is henceforth chosen when IZ + -), we obtain 

x(t*) = limj’“‘(r,) = limP(z,) = limx, = x* 
(3.5) 

x(t) = limj’“‘( t) = limj;c”‘(f), t E (t*, 61 

It follows from (3.3)-(3.5) that the vector functionx(t), t E [t*, 61 satisfies the differential inclusion 

11 E F,,,( t, n) almost everywhere in [t,, 61 (3.6) 

and the inclusion 

(3.7) 

The inclusion (3.6) is proved in the standard manner (see [15], for example). 
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We will now prove the inclusion (3.7). We fix an arbitrary instant of time t E [t*, 61. The equalityx(t) = limy(“)(t) 
holds for this instant. By the construction of the function y(“)(t), t E [t*, 191, the inclusion 

P(t,w) = i’“‘(t,(t)) E W’“‘(r,(t)) 

is satisfied, where the instant of time is defined above. 
We put 

11” = t,(t) and y, = Z(“)(q,) = .?“‘(t,(r)) 

Then 

IlO, x(t)) - (rl,, Y.)ll s II<4 x(t)) - (4 P(O)ll + 

+ 110, j(“)(r)) - (t,(t), j’“‘(r,(r)))ll I h) - j’“‘(Oll + (I+ WA(“) 

Taking into account this inequality and the limiting relations 

x(t) = limj’“‘(t), IhA’“’ = 0 

we obtain 

(k.40) = lim(rl,, y,), tl, = t,(t), Y, E W(“)(rlJ 

The inclusion (3.7) is thereby proved. 

So, a solutionx(t), t E [t*, 61 of the differential inclusion (3.6) is found, for any point (t*, x,) E R”, 
t* < 19 and any w E ‘I-‘, which satisfies the inclusion (3.7). It follows from inclusions (3.6) and (3.7) that 
&lo@,) E x (t*; t*, Go@*)) for any (t*, t*) E A. This means that R” is a u-stable bridge in the approach 
problem being considered, and that Q” C I@. 

We will now prove the inverse inclusion IVs C no. 
We consider a subdivision I’, of the interval [to, $1 and all the non-empty sections I@(tJ, tj E I, of 

bridge I@. We use the notation 

T,, = {tiE I-,: w”&.#0} 

The set T,, is non-empty. Since I@(t,) = M# 0. Moreover, the set T,, possesses the following property: 
iftiE T,thenti+rE T,,. 

According to Definitions 1 and 2, the inclusions 

W’(tj)~@(tj) nX;‘(& ti+I, W’(tj+l)), tj~ T,,, VIE ‘4’ (3.8) 

hold. 
We select an arbitrary instant of time tj E T,,, ti < 19 and consider the sets FVs(tj) and wO(ti + &,+); 

the numbers O(Aj) are defined above. 
The inclusion 

WO(tj) C X;l(‘j, lj+It $Crj+ Ilo(A tiE Tn (3.9) 

holds. 

We shall prove this. Suppose x(ti) E J@(ti). 
We consider an arbitrary solution x(t), t 2 ti of the differential inclusion 

i E F,(r, A-), r 2 ti 

with an initial value x(r.). 
Since (tiy X(ti)) E & C innDO, then, for all t E [ti, ti + r] sufficiently close to til the inclusion (t, x(t)) E intaO 

holds. We will show that the inclusion (t, x(t)) E innDO holds for all t E [ti, ti + r] subject to special assumptions 
regarding r,. 
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Let us assume that the opposite is true: there is an instant of time to E [t,, tj + i] at which the point (t,x(t)) reaches 
the boundary &DO of the set QO. Without loss in generality, we can assume that to is the time when the point 
(t, x(t)), t 2 ti first reaches the boundary &BO, that is 

(t, x(t)) E into0 when t E [ti. t”) and (t”, x(P)) E &DO 

It follows from this that the equalityi = f(t), where IIf ]] I K is satisfied almost everywhere in [ti, t”]. The point 
(t”, x(P) then satisfies the inequality 

I[( to, x( t”)) - (t;, x( t;))lI I (to - t;) + K( to - ti) < ( 1 + K)Ai < o 

Hence, the inclusion (t”,x(t”)) E into, also follows from the inclusion (tj,x(ti)) E Q’, which contradicts the definition 
of the instant to. At the same time, it has been established that (t, x(t)) E int@, C OO for all t E [t,, ti + i]. 

We now consider the set X,&t, + ,; t,, x(Q) for the selected point x(tJ E @(tJ. Each point x(tl + 1) E X,,,(ti + 1; 
ti, x(tJ) is the value at the instant of time tj + i of a certain solution x(t), t E [ti, tj + 1] of the differential inclusion 
X E F,+,(t, x), t E [ti, ti + r] with an initial value X(ti). The equality 

‘,+ / 

holds wheref(t) is a Lebesque integrable function which satisfies the inclusionf(t) E F,,,(t, x(t)) almost everywhere 
in [ti, 4 + 11. 

Taking account of the inclusion 

(tj*X(fi)) E @07 tt9 x(t)) E @09 t E iti* ‘j+ 11 

and the definition of the function w*(A), we obtain 

d(~,+,(t, x(t)), F,+,(t+ x(ti))) s ~*(lt - til + (Ix(t) - n(tJll) s a*(( 1 + J)AJ, t E [tiv ti+ 11 (3.10) 

This means that the inclusion 

f0) E Fty(ri9 X(ti))&((l + K)A) 

holds from which the inclusion 

‘,+ I 

k I f(r)dtE Fv(rii X(ri))o*((l +K)A,) 
, f , 

(3.11) 

follows. 
The inclusion 

follows from (3.11). 

X(fj+ 1) 6X jivtti+ 1; fi9 x(ti))m(A) (3.12) 

Taking account of the fact that relation (3.12) was obtained for an arbitrary point X(ti + 1) E X,(ti + ,; ti, x(Q), 
we conclude that 

It follows from the inclusion x(ti) E wo(ti) that 

W”(ti+l)nXyf(ti+l~ ti7x(ti))f0 

and this means that 

W”(ti + 1 )o(A,) n XI+t(‘i + 1; ti, x(fi)) f 0 (3.13) 

Since the instant of time ti E T, and the point X(ti) E fl(tJ are chosen arbitrarily, the inclusion (3.9) follows 
from (3.13). 

Next, we define the system {@(“)(tJ : ti E T,> of sets WC”)(&) by the equalities @(“‘(ti) = W”(ti), (the 
numbers &j are defined above in Section 2). According to the definition of the sets l@(“)(tJ, ti E T,, the 
inclusions @(tJ C kV”‘(ti), ti E T, are satisfied. 
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The inclusions 

iV”‘(t,) C i:(tiv ti+ 1, lV’“)(ti+ I)), ti E Tn (3.14) 

hold for any v E Y. 

We will now prove this. Suppose x(ti) E H’(“)(ti), and X*(Q) is the point in wO(ti) which is closest to the point 
x(ti). The inequality Ill -X*(Q) 11 I Ei holds. 

The relation 

@(ti+ IJO n Xw(‘i+ 1; ti, X*(ri)) * 0 (3.15) 

follows from the inclusions X*(ti) E wO(ti) and (3.9) 
Then, a point 

x*(‘i+ 1) = x*(ti) + Aif*( f*(r,) E F,+,(ri, x*(ti)) (3.16) 

exists which is contained in wO(ti + J+Q. 
Since (tit X*(ti)) E W” C Q0 and (ti, X(ti)) E IV:, C p0 C Q0 then, according to condition A.4, the inequality 

d(F+r(ti9 x(fi))v Fy(riv x*(ti))) s hllx(fi) - x*(ti)l( 

is satisfied. 
Taking this inequality into account, we select a vectorf(ti) E FJti, X(ti)) which satisfies the inequality 

Ilf(ri) -f*(ri)ll s Al(X(ti) - x*(ri)lJ s &i 

It is then found that the point X(ti + 1) = X(ti) + Aif is at a distance no greater than the quantity 

Ilx(ti) - x*(ri)lJ + AilIf - f*(ri)JI s (1 + Q)Ei 

from the point (3.15). 
This means that x(ti + 1) E F@) (ti + 1). 
Hence it has been shown that the relation 

i#;+,; $,X($)) n iP’(ti+,)#O 

is satisfied for any w E ‘I’ and any ti E T, and X(fi) E @) (ti), 
The inclusion (3.14) follows from this. 
The inclusion 

iY’“‘(t,) E ii’“‘&.), ri E T,, (3.17) 

also holds. 
We will prove this by mathematical induction. Actually, relations 

ii+“‘(tJ = w”(ti), c a($),, ti E T, 

- (n) 
w (tN(n)) 

0 
= w (h(&(., = MEN(“) = W(tN(*,) 

are satisfied. Consequently, the inclusion @) (ti) C @) (ti) is satisfied for i = N(n). 
We will now prove that the inclusion (3.17) is satisfied for all remaining i for which ti E T,. 
In order to do this, we assume that ti E T,,, i < N(n) - 1 and that the inclusion 

(3.18) 

(3.19) 

iyyti+ ,) c ii7(“)(ti+ *) 

holds for the instant of time ti + 1 E Tn. 
We will prove that 6@) (ti) C 6@) (tJ. Actually, it follows from relations (3.14) and (3.18) that 

iP’(ti)caqti)E “i;‘(ti; ti+‘, w’“‘(ti+,)), WE Y 

(3.20) 
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and it follows from (3.20) that 

@frj), n xijl(‘i; fi+ 1, iP(tj+ 1)) c a(+), n x;‘(ti; ti+ 1, G’n)(ti+l))v WE y 

We therefore obtain that I@) (ti) C I&@) (tJ. Relations (3.17) are proved. 

We will now use relations (3.17) to rove the inclusion 9 C Go. 
When t* = 6, the equalities wf 

wO(t*) = clO(t*). 
(t*) = M, Q’(t,) = M are satisfied and this means that 

Suppose t* < 6. We choose an arbitrary point and the inequalities 

t, It,(t,) 5 t, + A’“‘, n = 1,2, . . . 

hold. 
Since (t*,x*) E I@, a solutionx(t), t E [t*, 61 of the differential inclusionie F,+,(t,x),x(t,) =x* exists 

for any tlr E Y which satisfies the inclusion (t, x(t)) E IV’, t E [t*, 61. The inclusion 

x(cl(t*)) E WoU,(r*)) c iir’“‘(t.(t*)) c iP’(t,(t*)) 

follows from this. 
This means that a point x(tJt*)) E fi) (t,(Q) exists for each n such that 

IlxO,O*N - x*11 5 Ut,(t*) - t*) 

On taking the equality lim(t,(t*) -t*) = 0 into account, we obtain that the sequence {(tn(t*)),x(tn(t*))} 
of points from I@’ satisfies the relation (t*,x*) = lim(t,(t*),x(t,(t,))) and this means that (t*,x*) E R”. 

It has been shown that @(t*) C Cl’(t,), t* c 6. 
The inclusion I@ C Q” follows from the relations I@(9) C Q’(S) and @(t*) C iI’( t* < 6. The 

equality Go = IYe follows from the inclusions Q” C IVe and Ws C Q”. The theorem is proved. 

4. NUMERICAL MODELLING FOR SECOND-ORDER CONTROLLED 
DYNAMICAL SYSTEMS 

A class second-order controlled dynamical systems is considered in which there is no controlling action 
of the second player. For these systems, the positional absorption set I@, corresponding to the time 
interval [to, 91, is the set of all the initial positions (t*, x,) from which the problem of the adduction of 
the motions of the system into the target set M after a time not exceeding 6 - to is solvable. 

The problem of the numerical construction of the set fl is solved. For this purpose, a subdivision 
I- = {to, t1 , . . . , tn = 6 of the time interval [to, 191 is constructed with a step size A. The domain in the 
phase plane, which “a priori” contains time sections of the set @, is covered with a square mesh with 
a step size h which is proportional to d. The union of the sets {E’(ti)}, which approximates I@, is 
constructed on this mesh using the retrograde procedures described above. The discrimination of the 
boundary of each element of the union is accomplished using the pixel method. A similar approach to 
the problem of constructing numerical approximations of the solutions of dynamical systems has been 
used earlier in [16]. The matching of the step size of the time interval subdivision and the step size of 
the subdivision of the phase space using the formula h = CA3”, where C is a constant, ensures the 
convergence of the finite-difference constructions to the set I@ in the Hausdorff metric in the class of 
problems being considered. 

The computational scheme developed was used to model different controllable dynamical system in 
a plane. 

As an example, we consider a controlled rigid spring which is described by the non-linear system of differential 
equations 

R = y, j = -x-x3+u; ]u]‘l 

We will study the evolution of the dynamical system in the time interval [to, 61 = [0, 31 when there is a 
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Fig. 3 

non-simply-connected phase constraint. As this phase constraint, we consider the sum of a convex set (a circle of 
radius r = 0.2 with its centre at the point (x,y) = (0.5, OS), a non-convex set (a five-pointed star with its centre at 
the point (x, y) = (-0.13, -0.15)) and an unbounded set (closure of the complement of the rectangle B = {(x,y): 
-1.5 5 x 5 1.5, -1.5 I y 5 1.5 up to R2). The origin of coordinates (x, y) = (0,O) is the objective set. The set I@ is 
constructed which can be subsequently used to solve the problem of bringing the motions of the dynamical system 
to the origin of coordinates. 

Sections of the set I@, corresponding to the instants of time t = 1, 2, 3 respectively are shown in Figs 1-3. In 
the numerical modelling, the discretization parameter A = 0.02. 

This research was supported financially by the Russian Foundation for Basic Research (02-01-96424, 
02-Ol-00769,00-1596507). 
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